

INTEGRATED ASSESSMENT MODELS: A CASE STUDY IN NORTHERN ITALY

C. Carnevale, G. Finzi, A. Pederzoli, **E. Turrini**, M. Volta

DIMI – Università di Brescia

THE CHALLENGE

PM10 compliance

TSAP Report #10, Version 1.1, Amann et al, IIASA, March 2013

DIRECTIVE 2008/50/EC CHAPTER IV - Article 23 *Air quality plans*

Where ... the levels of pollutants in ambient air exceed any limit value or target value ... Member States shall ensure that air quality plans are established ... in order to achieve the related limit values or target values

INTEGRATED ASSESSMENT MODELS

THE IAM APPROACHES

Approach 1:

IAM assesses the impacts of proposed actions

Scenario analysis

scenario defined by

- experts
- source-apportionment

Approach 2: IAM identifies effective emission reduction measures

Optimization approach

- Cost effective
- Multi-objective

Approach 1: IAM assesses proposed action impacts: scenario assessment

Approach 2: IAM identifies effective emission reduction measures

2. Optimization approach

 $C(x,z) \leq L$

Control variables: application rate

Objective function: costs $\min J(x, z) = \min \begin{bmatrix} AQI(x, z) & C(x, z) \end{bmatrix}$ X, Z $c_{k,f} = \sum_{t \in T_{k,f}} c_{k,f,t} \cdot A_{k,f} \cdot X_{k,f,t} + \sum_{t \in T_{k,f}} c_{k,f,t} \cdot A_{k,f} \cdot Z_{k,f,t}$ SUM OVER UN A APPLICATIO MACROSECTORS for sector k, ac AND ACTIVITIES $C(x,z) = \sum_{k=f} c_{k,f}$

Objective function: AQI

$$\min_{x,z} J(x,z) = \min_{x,z} \begin{bmatrix} AQI(x,z) & C(x,z) \end{bmatrix}$$
$$AQI(x,z) = f(E(x,z))$$

The function f:

- links emissions and AQI
- Non linear
- Fast air quality model
- Good performance

Artificial Neural Networks

A series of long term simulations is performed.

Artificial Neural Networks are used to derive the source-receptor relationships between emission sources and air quality indicators at given receptor sites which will be used in the optimization algorithm.

ANNs models: Inputs & Outputs

Sum of emissions over four quadrants.

ANNs models: Design of Experiment

Scenarios	NOXa	VOXa	NH3a	PMa	SO2a	NOXp	VOCp	NH3p	РМр	SO2p	Boundary condition s
0	В	В	В	В	В	В	В	В	В	В	В
1	L	L	L	L	L	В	В	В	В	В	В
2	Н	Н	Н	Н	Н	В	В	В	В	В	В
3	Н	L	L	L	L	В	В	В	В	В	В
4	L	Н	L	L	L	В	В	В	В	В	В
5	L	L	Н	L	L	В	В	В	В	В	В
6	L	L	L	Н	L	В	В	В	В	В	В
7	L	L	L	L	Н	В	В	В	В	В	В
8	Н	Н	L	L	L	В	В	В	В	В	В
9	Н	L	Н	Н	Н	В	В	В	В	В	В
10	Н	L	Н	L	L	В	В	В	В	В	В
11	Н	L	Н	L	Н	В	В	В	В	В	В
12	В	В	В	В	В	L	L	L	L	L	В
13	В	В	В	В	В	Н	Н	Н	Н	Н	В
14	В	В	В	В	В	Н	L	L	Н	Н	В
15	В	В	В	В	В	L	L	L	L	Н	В
16	В	В	В	В	В	Н	L	L	L	Н	В
17	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	В
18	Н	L	Н	Н	Н	Н	L	L	Н	Н	В
19	L	L	L	L	Н	L	L	L	L	Н	В
20	Н	L	Н	L	Н	Н	L	L	L	Н	В
21	Н	Н	L	L	L	Н	Н	L	L	L	В

TCAM deterministic modelling system simulations

B = cle2010H = mfr2020 L = average of B,H

Optimization

This optimumAQI can be computed for each cost, it gives a optimal curve called "Pareto curve".

Traffic scenario analysis

- Vehicle fleet: new EURO standard
- Efficiency Measures:
 - bus investment
 - bicycle path
 - Iower speed on highway

Scenario analysis vs optimization

Scenario analysis vs optimization

Example of RIAT results

Conclusions

• Scenario analysis approach:

- allows to assess the variations of AQI due to the application of a set of policies chosen by the user;
- the measures that can be implemented are hundreds; does not guarantee that the most efficient combination of measures is identified.
- The Multi-Objective approach:
 - optimizes a number of objectives simultaneously;
 - allows to find the most efficient set of measures that guarantees to achieve the highest reduction of secondary pollution over the domain , at minimum costs.

Thank you for your attention

•Carnevale, C.; Finzi, G.; Pederzoli, A.; Turrini, E.; Volta, M.; Guariso, G.; Gianfreda, R.; Maffeis, G.; Pisoni, E.; Thunis, P.;Markl-Hummel, L.; Perron, G.; Blond, N.; Weber, C.; Clappier, A.; Dunardin, V.; in press. "Exploring trade-offs between air pollutants through an Integrated Assessment Model".

•C. Carnevale, G. Finzi, E. Pisoni, M. Volta, G. Guariso, R. Gianfreda, G. Maffeis, P. Thunis, L. White, G. Triacchini (2012). An integrated assessment tool to define effective air quality policies at regional scale, Environmental Modelling and Software, 38, 306-315.

•Carnevale, C., Finzi, G., Pisoni, E., & Volta, M. (2009). Neuro-fuzzy and neural network systems for air quality control. Atmospheric Environment, 43, 4811-4821.